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Maths tutorial booklet for  

M1: Handling data 

 

 

Name:_________________________________________________________ 

Target grade:___________________________________________________ 

Quiz scores: 

M1.1 Use an appropriate number of significant figures = 

M1.2 Find arithmetic means =  

M1.3  Construct and interpret frequency tables and diagrams, bar charts and histograms = 

M1.4 Understand simple probability = 

M1.5 Understand the principles of sampling as applied to scientific data = 

M1.6 Understand the terms mean, mode and median = 

M1.7 Use a scatter diagram to identify a correlation between two variables = 

M1.8 Make order of magnitude calculations = 

M1.9 Select and use a statistical test = 

M1.10 Understanding measures of dispersion including standard deviation and range = 

M1.11 Identify uncertainties in measurements and use simple techniques to determine uncertainty 

when data are combined = 
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M1.1 – Use an appropriate number of 

significant figures 

Tutorials 

Learners may be tested on their ability to: 

 report calculations to an appropriate number of significant figures given raw data 
quoted to varying numbers of significant figures 

 understand that calculated results can only be reported to the limits of the least 
accurate measurement. 

 

Significant figures 

When you report your answers it is important to use the correct number of significant figures. 

The number of significant figures derives from the resolution of the measuring apparatus, 

which places an upper limit on the level of accuracy achievable with that apparatus (a piece 

of apparatus with very good resolution could of course be highly inaccurate if it is poorly 

calibrated). Calculated results can only be reported to the limits of the lowest resolution 

measurement (the lowest level of accuracy). 

Lowest level of accuracy 

For example, if there are 3 inputs in a particular calculation with 2, 3 and 4 significant figures 

respectively then the answer can only meaningfully be reported as correct to 2 significant 

figures. 

Reporting answers to a certain number of significant figures may involve rounding. 

Remember - when the next number is 4 or below you round down, when the number is 5 or 

above you round up. 

Rounding 

1 - 4  Round down 

5+  Round up 

You need to be careful when you are rounding numbers. Common mistakes include 

forgetting to include zeros as significant figures. For example, 4.99 rounded to 2 significant 

figures is 5.0 not just 5. 

Round to 2 significant figures: 

4.99  5.0  

4.99  5  X 

  



 

Version 1 3 
© OCR 2017 

 

Another “zero” mistake is to report zeros at the start of the number as significant figures. 
Remember, any zeros that come at the front of the number are not significant figures. For 
example, reporting 0.0256 to two significant figures will give you 0.026. 

Report to two significant figures: 

0.0256  0.026 

You must also remember to always round numbers in a single step, not sequentially. For 
example for an answer with two significant figures you don’t round 2.4478 first to 2.45 and 
then to 2.5. You need to round the number in a single step giving 2.4 to two significant 
figures. 

Round to 2 significant figures: 

2.4478  2.45  2.5   X 

2.4478  2.4    

 

Significant figures are important in all sorts of biological contexts, when reporting 

experimental data and for any calculation. Always remember to check whether the question 

asks you to report your answer to a certain number of significant figures, and if not, 

remember to use the lowest level of accuracy in the data. 

M1.1 – Use an appropriate number of 

significant figures 

Quiz 
1.  In each case convert to the number of significant figures quoted.  

a) 2342 to 3 sig fig    

b) 2342 to 2 sig fig 

c) 456 to 2 sig fig     

d) 0.07842 to 3 sig fig 

e) 0.07842 to 2 sig fig    

f) 0.003004 to 3 sig fig 

 

 

(Note: for questions 2 to 4 you should be able to identify the appropriate number of significant 

figures to which to give your answer as well as convert the calculated result to that number of sig 

figs. If you are finding the calculations themselves difficult please refer to M2.3 and M2.4). 
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2.  A hypothermic patient was rewarmed from 30.6°C to 37.1°C over the course of 3.4 h. What was 

the rate of warming (use °C h-1 as your units)? 

 

 

 

 

 

 

 

3. A willow coppice woodland in the UK has an area of 1.15 ha. (ha is the symbol for heactare – an 

area of land equal to 10,000 m2). When the willow harvest is taken each year, and dried, it 

yields 9 odt (oven-dry tonnes) of biomass. What is the productivity of the land (the amount of 

biomass produced per unit area) in units of odt ha-1?  

 

 

 

 

 

4.  A model cell is made of visking tubing (partially permeable membrane) containing sucrose 

solution and is immersed in distilled water. In 23.5 min the volume of the model cell increases 

by 1.0 cm3 due to inflow of water by osmosis. What is the rate of osmosis in units of cm3 min-1? 
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M1.2 – Find arithmetic means 

Tutorials 
Learners may be tested on their ability to: 

 find the mean of a range of data e.g. the mean number of stomata in the leaves of a plant. 

Calculating means 
The “mean” is another way of saying the “average”. The mean is calculated by adding together all 

the values and dividing by the number of values.  

The symbol for mean is: 

 

As a formula this is written as:  

mean equals the sum of all the data values (𝑥), divided by the number of data values (n):  

�̅� =   
∑ 𝑥

𝑛
 

The calculated value for the mean can be quoted to the same number of decimal places as the raw 

data or to one more decimal place (see section M0.2). Comparing means is very useful for 

experimental repeats or comparing between different experimental conditions. 

Anomalies  
When working with data you need to be able to identify anomalies, or outliers. Anomalies are values 

which are judged not to be part of the inherent variation. Notice that there is an element of 

judgement here on the part of the scientist carrying out the investigation and this judgement must 

be exercised extremely carefully.  

You must never discard a value just because it doesn’t fit with what you expect or the rest of the 

data, especially without knowing more about the experiment itself. In general, if you do not have 

confidence in the data the best thing to do is to collect more data.  

However, anomalies may occur because of a failure of the experimental procedure or because of 

human error, and in these situations the anomalies should be ignored, particularly if you are using 

the data to calculate the mean. 

x
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For example here are the bubble counts recorded in ten repeats of an experiment in which potato 

discs are added to hydrogen peroxide: 

Repeat 1 2 3 4 5 6 7 8 9 10 

Bubbles 
produced 
in 5 min 

55 46 62 49 6 53 51 59 49 54 

 

Repeat 5 has a much lower bubble count than any other repeat. 

If there is a reason to think that this repeat might not have been carried out correctly, for example 

the discs used had been cut and then left out during a pause in the experiment (whereas in all other 

repeats they were used immediately) and might have become dry, then the experimenter might be 

justified in excluding this result from the calculation of the mean. If this choice is made it should be 

clearly recorded: 

Repeat 
1 2 3 4 5 6 7 8 9 10 

Mean using 
all data 

Mean 
excluding 
repeat 5 

Bubbles produced 
in  
5 min 

55 46 62 49 6 53 51 59 49 54 48.4 53.1 

 

M1.2 – Find arithmetic means 

Quiz - calculate the mean: 
1. Students measured the number of carrots eaten by rabbits over 24 hours. Calculate the 

mean number of carrots eaten. 

 

Carrots eaten per rabbit:  

6 5 8 5 9 6 7 7 7 8 
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2. The number of stomata on the upper and lower sides of 5 leaves of a plant were 

counted.  

No. of stomata on 

lower side of leaf 

No. of stomata on 

upper side of leaf 

45 6 

48 9 

47 11 

50 7 

46 7 

 

How do the mean numbers of stomata compare on the upper and lower sides of the 

leaf?  
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M1.3 – Construct and interpret frequency 

tables and diagrams, bar charts and 

histograms 

Tutorials 

Learners may be tested on their ability to: 

 represent a range of data in a table with clear headings, units and consistent decimal 
places 

 interpret data from a variety of tables, e.g. data relating to organ function 

 plot a range of data in an appropriate format, e.g. enzyme activity over time 
represented on a graph 

 interpret data for a variety of graphs, e.g. explain electrocardiogram traces. 

 

Construct and interpret frequency tables and diagrams, bar charts 
and histograms 

You should have come across frequency tables, bar charts and histograms in GCSEs. There are a few 

important rules that you need to follow whenever you represent data in a table or plot a graph. For 

tables you need to include clear headings and units and also be consistent with decimal places. For 

graphs including histograms and bar charts you must always: 

 include a title 

 include axes labels (with units) 

 plot the independent variable (IV) on the x axis 

 plot the dependent variable (DV) on the y axis 

 ensure that the scales for both axes are linear (0, 1, 2, 3, 4...) unless producing a 
logarithmic plot (see M0.5 and M2.5) 

 plot your data carefully  

 make sure the graph is large enough to be easily readable (aim to use >50% of the 
space available). 
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You also need to remember the important differences between histograms and bar charts. Bar charts are 

used when the data is qualitative (either as categories such as different plant species or in a rankable 

form such as ACFOR abundance scores) or is quantitative but discrete - it can only take specific values and 

there are no ‘in between’ values. Examples of data suitable to be plotted on a bar chart include variables 

such as eye colour (qualitative categoric) or number of offspring (quantitative discrete). The bars in bar 

charts are the same width and there are gaps between the bars, they are not touching, when it is plotted. 

Histograms on the other hand are used when the data is quantitative and continuous. Height, weight, and 

age are all examples of continuous data where they are measured to a specified accuracy. Unlike bar 

charts there are no gaps between the bars. 

Note: the class width of different classes in a histogram can be different as it is the area of the bars that is 

proportional to frequency. However, this can be confusing for people interpreting the histogram so it is 

good practice, whenever possible, to use classes of the same width. 

Bar chart Histogram 

Qualitative data (categoric or 
rankable) 

Discrete quantitative data 
Continuous quantitative data 

Bars the same width 
Differing widths of bars possible 

but not advised 

Bars not touching Bars touch 
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Let’s try an example of plotting a histogram. The heights of different plants of the same species were 

measured to the nearest cm: 

Plant 1 2 3 4 5 6 7 8 9 10 11 12 

Height 
(cm) 

157 188 163 188 171 184 187 161 175 169 193 175 

Plant 13 14 15 16 17 18 19 20 21 22 23 24 

Height 
(cm) 

181 199 166 163 177 150 171 156 172 172 183 166 

The first step in producing a histogram is to choose the number and width of classes and then create a 

frequency table using those classes: 

Height to the nearest cm Frequency 

150≤x<160 3 

160≤x<170 6 

170≤x<180 7 

180≤x<190 6 

190≤x<200 2 

 



 

Version 1 11  
© OCR 2017 

The histogram can now be plotted using the processed data and with each class represented by a bar on 

the histogram:  

As well as understanding when to use histograms and bar charts, and how to plot them, you must also be 

able to plot and interpret line graphs and scattergrams. More information about graphs can be found in 

M3.  

M1.3 – Construct and interpret frequency tables 

and diagrams, bar charts and histograms 

Quiz 

For the below data sets: 

a) Determine whether a histogram or bar chart is the more appropriate graph to plot with reasons. 
b) Plot the graph. 

 

1. Blood samples were taken from a group of patients and the frequency of blood groups is 
presented in the table below. 

Blood group Frequency 

A 40 

B 10 

AB 5 

O 40 
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2. The ages of teenage boys and men attending at least one hour of gym class in a week were recorded. 
Process and present these data to show how the numbers doing this kind of exercise vary with age. 

 

Age 
(years) 

Age 
(years) 

Age 
(years) 

Age 
(years) 

Age 
(years) 

Age 
(years) 

Age 
(years) 

Age 
(years) 

Age 
(years) 

Age 
(years) 

15.7 56.1 50.1 34.1 16.4 44.2 65.5 45.0 57.4 22.2 

31.7 35.4 17.8 19.2 32.2 62.9 77.0 28.1 33.4 18.8 

23.6 25.6 27.7 48.7 39.9 30.9 34.4 77.8 53.7 52.2 

27.0 17.2 43.5 21.1 54.2 31.1 24.4 18.1 34.0 21.5 

16.3 25.0 20.6 19.9 22.7 64.0 29.9 24.2 32.4 17.7 

36.4 22.0 21.0 50.4 18.6 19.6 49.1 38.6 49.9 46.1 

48.8 31.1 39.8 57.3 30.1 33.1 23.5 36.1 41.1 43.7 
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3. Vitamin C content of fruits 

 

 

 

 

 

 

 

 

 

M1.4 – Understand simple probability 

Tutorials 
Learners may be tested on their ability to: 

 Use the terms probability and chance appropriately 

 Understand the probability associated with genetic inheritance. 

Probability and chance 
Probability 

When I toss a coin there are two possible outcomes, it can land facing heads up, or tails up. There 

are only two possible outcomes, but with each toss of the coin it is impossible to predict which of 

these two things will occur. Therefore, we can say that the outcome from the toss of a coin is 

random. Although the outcome of each individual coin toss is random, we know that (if the coin is 

unbiased) heads and tails are equally likely therefore we can say that there is a 50% probability of 

getting heads and a 50% probability of getting tails. This becomes extremely useful when the coin is 

tossed repeatedly. We can reason ‘forwards and backwards’ using the concept of probability to 

make meaningful statements about the results:  

In the ‘forwards’ direction we can make useful predictions about the overall outcome of 

many repeats, even though each repeat is itself random. So, for example if we know that the 

coin will be tossed 100 times we can predict that there will be approximately 50 heads and 

50 tails.  

In the ‘backwards’ direction we can use the outcome of many repeats to assess whether our 

understanding of the system is correct. If the actual outcome of 100 tosses of the coin is 48 

heads and 52 tails we would not be surprised – this is approximately the ratio of heads to 

tails we expected based on our assumption that the coin is unbiased. If, however we get 99 

heads and only 1 tail we would be surprised and might suspect that the coin is biased. To put 

Fruit 
Vitamin C content 

(mg 100g -1) 

Apple 6 

Banana 9 

Lemon  46 

Kiwi fruit 96 

Orange  53 

Strawberry 57 
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exact numbers on how surprised we are, or more precisely how confident we are that our 

assumption about the system was wrong, we use statistical tests (see M1.9). 

The probability of an event occurring is the likelihood of it occurring. The probability of an event A, 

written P(A), can be between zero and one, with P(A) = 1 indicating that the event will certainly 

happen and with P(A) = 0 indicating that event A will certainly not happen. When I estimate the 

probability of a coin toss landing on heads, it would be 0.5. If there is more than one variable 

involved, then you calculate the probability that an individual has one variable outcome AND the 

other variable outcome by multiplying the separate probabilities together. For instance if I wanted 

to calculate the probability of getting heads on TWO coin tosses that would be 0.5 x 0.5 = 0.25.  

 

The difference between probability and chance 

In statistics we use probability as the appropriate term for expressing likelihoods (as ratios, decimals 

or percentages)  

For example – When tossing a coin we have a probability of 0.5 of the coin landing on heads – with 

this information we can predict that with ten coin flips, approximately five of them will land heads 

up. 

In everyday speech ‘chance’ is often used to mean the same thing as ‘probability’. For example we 

might say ‘I think the chance of rain today is about 50/50’ meaning that we think there is a 50% 

probability of rain. However, when we use the word ‘chance’ in commenting on statistics we are 

using it to talk about the random deviations from probability that can occur (and especially whether 

we think these random deviations are sufficient to explain why the outcome did not exactly match 

our expectation based on probability). 

Using coin tosses as an example once more, if we actually got six heads from ten tosses of the coin 

we might say ‘getting six rather than the predicted five was due to chance’. If we got nine heads we 

might say ‘this is too far from the predicted outcome to be explained by chance and so we now 

believe this coin is biased’. The cut-off point for how far away from the prediction (based on 

probability) the results have to be before they cannot be explained by chance is where statistical 

tests come in (see M1.9). 

The effect of chance, in percentage terms, is largest when the number of repeats is small. Clearly if 

we only toss a coin four times, a single result has a big effect on the percentage of heads whereas if 

we do 1000 repeats the effect of a single result is much smaller. This is the reason that experiments 

often use many repeats, or take many samples. 
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Probability and patterns of genetic inheritance 

In a genetic cross of two Drosophila melanogaster (fruit flies) that are each heterozygous for the 

mutant allele of the vestigial gene (which is recessive and found on chromosome 2), we predict that 

the probability of each individual offspring being a recessive homozygote (which means it will have 

tiny wings) is 0.25, the equivalent of saying that 1 in 4 offspring will have tiny wings. 

 

 

This can be displayed as a Punnett square showing the four equally likely offspring: 

  Vg / vg female parent gametes 

  Vg vg 

Vg / vg male parent 
gametes 

Vg 
Vg / Vg 

Normal wings 
Vg / vg 

Normal wings 

vg 
Vg / vg 

Normal wings 
vg / vg 

tiny wings 

 

Things get a little more complicated when we include a second genetic trait. Individuals that are 

homozygous for the recessive mutant version of the ebony gene (found on chromosome 3), have 

very darkly coloured bodies (Heterozygotes sometimes have slightly darker bodies). If the parents 

are heterozygous at both the ebony locus and the vestigial locus, then the probability of an 

individual having tiny wings and dark bodies is 0.25 x 0.25 = 0.0625 or 1/16. 

 

 

 

Parents Vg / vg  x  Vg / vg 

Allele inheritance patterns for 
offspring (four equally likely 
outcomes): 

Vg / Vg Vg / vg vg / Vg vg / vg 

Offspring Genotypes 

(three outcomes): 
Vg / Vg Vg / vg vg / vg 

Offspring Phenotypes 

(two outcomes): 
Normal wings Tiny wings 
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Again this can be shown in a Punnett square giving the 16 equally likely outcomes: 

  Vg / vg  Eb / eb  female parent gametes 

  Vg   Eb vg   Eb Vg   eb vg   eb 

Vg/vg  Eb/eb  
male parent 

gametes 

Vg   Eb 
Vg/Vg Eb/Eb 
Normal wing 
Normal body 

Vg/vg Eb/Eb 

Normal wing 

Normal body 

Vg/Vg Eb/eb 

Normal wing 

Normal body 

Vg/vg Eb/eb 

Normal wing 

Normal body 

vg   Eb 
vg/Vg Eb/Eb 
Normal wing 
Normal body 

vg/vg Eb/Eb 

tiny wing 

Normal body 

vg/Vg Eb/eb 

Normal wing 

Normal body 

vg/vg Eb/eb 

tiny wing 

Normal body 

Vg   eb 
Vg/Vg eb/Eb 
Normal wing 
Normal body 

Vg/vg eb/Eb 

Normal wing 

Normal body 

Vg/Vg eb/eb 

Normal wing 

ebony body 

Vg/vg eb/eb 

Normal wing 

ebony body 

vg   eb 
vg/Vg eb/Eb 
Normal wing 
Normal body 

vg/vg eb/Eb 

tiny wing 

Normal body 

vg/Vg eb/eb 

Normal wing 

ebony body 

vg/vg eb/eb 

tiny wing 

ebony body 
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And the numbers of each of those outcomes giving each of the four possible phenotypes is easier to 

see if we colour code: 

  Vg / vg  Eb / eb  female parent gametes 

  Vg   Eb vg   Eb Vg   eb vg   eb 

Vg/vg  Eb/eb  
male parent 

gametes 

Vg   Eb 
Vg/Vg Eb/Eb 
Normal wing 
Normal body 

Vg/vg Eb/Eb 
Normal wing 
Normal body 

Vg/Vg Eb/eb 
Normal wing 
Normal body 

Vg/vg Eb/eb 
Normal wing 
Normal body 

vg   Eb 
vg/Vg Eb/Eb 
Normal wing 
Normal body 

vg/vg Eb/Eb 
tiny wing 

Normal body 

vg/Vg Eb/eb 
Normal wing 
Normal body 

vg/vg Eb/eb 
tiny wing 

Normal body 

Vg   eb 
Vg/Vg eb/Eb 
Normal wing 
Normal body 

Vg/vg eb/Eb 
Normal wing 
Normal body 

Vg/Vg eb/eb 
Normal wing 
ebony body 

Vg/vg eb/eb 
Normal wing 
ebony body 

vg   eb 
vg/Vg eb/Eb 
Normal wing 
Normal body 

vg/vg eb/Eb 
tiny wing 

Normal body 

vg/Vg eb/eb 
Normal wing 
ebony body 

vg/vg eb/eb 
tiny wing 

ebony body 

 

So from our probability calculation, illustrated with the Punnett square we can say, for each 

offspring there is a 1/16 or 0.0625 or 6.25% probability that it will be doubly homozygous for the 

recessive alleles and therefore display the double mutant phenotype of tiny wings and an ebony-

coloured body. 

Similarly there is a 3/16 probability of each individual having normal wings but an ebony-coloured 

body. And 3/16 probability of each individual having tiny wings but a normal-coloured body. There is 

a 9/16 probability of each offspring appearing normal (although of course many of these flies will be 

heterozygotes, carrying mutant alleles at one or both loci). 

This leads to the classic expected ratio of phenotypes in the offspring in this kind of breeding 

experiment:  

9 : 3 : 3 : 1 

What if the results you get from such an experiment don’t exactly match the ratio you’d expect 

based on your probability calculations? 

It could just be due to chance or it could indicate that your assumptions were wrong. Statistical tests 

(in this case the chi-squared test) (see M1.9) will help you decide if the deviation away from your 

expectation is big enough to demand a re-think of your assumptions. If so, maybe the loci are linked 

(on the same chromosome) so they won’t be inherited truly independently. Or maybe something 

else weird is happening (e.g. the double mutant offspring are not surviving to adulthood to be 

counted).  



 

Version 1 18  
© OCR 2017 

M1.4 – Understand simple probability 

Quiz 

1. What is the probability of rolling a 5 on a six-sided die?  

 

 

2. What is the probability of rolling a 3 or a 5 on a six-sided die?  

 

 

3. What is the probability of rolling at least one 3 when rolling two dice?  

 

 

4.  What is the probability of rolling two 3s one after the other when rolling a single 

die?  

 

 

5. We have two cats where one is homozygous for alleles that produce a short tail 

which is a recessive trait, while the other is homozygous for alleles that produce a 

long tail which is dominant. With this knowledge we can make predictions about 

the characteristics of any offspring produced when these two cats are bred 

together.  

A. What is the probability that offspring would inherit one copy of the short tail 

allele?  

 

 

B. What is the probability that offspring would have short tails?  
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6. I have two flowers, both heterozygous at two loci. One locus is the petal colour 

gene where the yellow allele is recessive and the red allele is dominant. The 

other locus is the petal shape gene where a smooth petal allele is dominant and 

a wrinkly petal allele is recessive. 

 

A. What is the probability of an individual inheriting just one copy of the wrinkly 

allele and just one copy of the red allele? (i.e. being doubly heterozygous just like 

the parents) 

 

 

 

B. What is the probability of seeing an individual from this cross which has wrinkly 

red petals?  
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M1.5 – Understand the principles of sampling 

as applied to scientific data 

Tutorials 

Learners may be tested on their ability to: 

 analyse random data collected by an appropriate means, e.g. use Simpson’s index of 
diversity to calculate the biodiversity of a habitat. 

Sampling 

Sampling is an important part of scientific work: collecting data so that we can make inferences 

about relationships and processes in the natural world. For example, the only way to know the true 

mean height of a population of Sequoia (redwood) trees would be to measure every individual in the 

population. In reality this is practically impossible, because of the time it would take to do this, so 

instead we collect enough measurements in a sample to give us an accurate estimate of the true 

mean for the height of Sequoia trees, and we would refer to this as our sample mean.  

There are broadly two ways to take samples: randomly or non-randomly.  

Random sampling - When we carry out random sampling, the positions or sampling strategy used 

should be generated randomly. You as the experimenter do not choose which sites to sample, these 

are generated by a random number generator (such as the one on your calculator). In this way you 

do not influence the way in which measurements are taken. 

Non-random sampling - A systematic, or even, approach to sampling. Measuring bacterial growth 

every 10 minutes, or taking a sample every 5 m across a woodland. This can be useful for measuring 

how things change over time or distances, where random sampling could cause strange clusters in 

sampling. 

Stratified sampling – ‘Stratified’ or ‘layered’ sampling is a slightly more complex approach to 

sampling. The sampling approach is split according to predefined layers in the system being studied 

that could affect the results, for example splitting measurements of height by gender, and making 

sure that each ‘layer’ has a representative number of samples, in this case 50:50 to represent equal 

numbers of men and women.  

In another example we might look at the distribution of invertebrates in a field, 10% of the field is 

water-logged and so I make sure that 10% of the samples are collected from water-logged areas. 

 

When choosing which approach to use: 

Random sampling is a good default when we have no reason to space things out evenly. An even 

distribution is not the same as a random distribution!  



 

Version 1 21  
© OCR 2017 

Non-random sampling is best applied when we have a good reason for wanting to know how things 

might change at regular intervals (time or distance are the most common uses  

for this.) 

When employing stratified sampling we should have a good reason for why it is reasonable to split 

the data collection according to the proposed ‘layers’. Within each ‘layer’ of our stratified sampling 

we may choose to sample randomly or non-randomly, whichever is most appropriate for the 

question being asked. 

Simpson’s Index 

Sampling in field ecology is often used to measure abundance of different organisms in a habitat.  

Once the abundance of all the organisms present in a habitat has been determined, scientists will 

often mathematically calculate the biodiversity present in a habitat. This can be done using 

Simpson’s Index of Diversity (D): 

D = diversity index 

N = total number of organisms in the ecosystem 

n = number of individuals of each species 

𝐷 =  1 − ∑(
𝑛

𝑁
)2 

Simpson’s Index of Diversity always results in a value between 0 and 1, where 0 represents no 

diversity and a value of 1 represents infinite diversity. The higher the value of Simpson’s Index of 

Diversity, the more diverse the habitat. 

 

M1.5 – Understand the principles of sampling 

as applied to scientific data 

Quiz 

1. I want to measure the change in distribution of green alga from the low tide mark to the high 

tide mark. Should I use a random or non-random sampling method for choosing where to place 

my quadrats?  

 

2. You want to measure the distribution of flowers in a woodland. The woodland has been divided 

up into 100 areas of 10 m2. You cannot measure them all and so have to choose 10 sampling 

points. Should you use random or non-random sampling?  
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3. If in the previous example 19 of the areas were identified as heavily waterlogged how might 

stratified sampling be employed to improve our sampling technique? 

 

 

 

4. A rock pool was sampled for species richness. 

Calculate Simpsons Index of Diversity for this habitat using the formula: 

 

𝐷 =  1 − ∑(
𝑛

𝑁
)2 

Species Numbers  

Common periwinkle 35  

Dog whelk 41  

Common limpet 8  

Sea urchin 4  

Top shells 24  

Total (N)   
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M1.6 – Understand the terms mean, mode  

and median 

Tutorials 

Learners may be tested on their ability to: 

 calculate or compare the mean, median and mode of a set of data, e.g. 
height/mass/size of a group of organisms. 

Mean, median and mode 

The mean, median and mode are all measures of central tendency and act as representative values 

for the whole data set. The mean, usually denoted as x bar ( x ), has already been mentioned in 

section M1.2 and is the sum of the data values divided by the number of data values.  

Mean 

 

The median is the middle value of a data set and is usually denoted by Q2. Formally the middle value 

is the (n+1)/2th piece of data where n is the number of pieces of data. 

Median 

Q2 = 
𝑛+1

2
th 

Finally, the mode is the easiest to spot as it is the most frequently occurring value.  

Mode 

Most frequent 

For example, take this set of data values: 

25,24,27,28,19,31,25,31 
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To calculate the mean you need to add together all the values and divide by the number of values. 

This gives us 210 divided by 8, which equals 26.25 

25.26
8

210
x  

To find the median for the same data set we have to reorder the data from smallest to largest, 

meaning our data now looks like this: 

19,24,25,25,27,28,31,31 

Here there are 8 pieces of data, so using the (n+1)/2th formula we know that the median lies on the 

(8+1)/2 th piece of data which is the 4.5th piece of data 

(8+1)/2 = 4.5 

In this example we have an even number of data values, therefore the 4.5 th piece of data is halfway 

between the 4th and 5th values; 25 and 27. To work out the value halfway between these values we 

add them together and then divide by two. 

25+27 = 52 

52/2 = 26 

Therefore, the median for this data set equals 26. 

Finally, in this set of data there are two values which occur twice – 25 and 31. 

25,24,27,28,19,31,25,31 

Mode = 25 and 31 

Therefore this data set is “bi-modal”, it has two different modes, 25 and 31. 

Generally the mean is the most useful statistical measure. However, if there are outliers in the data 

then the median is more representative. For example, if a value of 100 was added to the example 

data set above, the mean would change to 34.4 but the median would move to 27, a far more 

representative measure. 

25, 24, 27, 28, 19, 31, 25, 31, 100 

4.34x  

Q2 = 27 

You may be asked to calculate and compare these quantities for any biological context where 

measurements are taken. For example when measuring: the length of leaves, the mass of model 

cells, or the number of a group of organisms and many more. 
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M1.6 – Understand the terms mean, mode  

and median 

Quiz 

Plants were grown in both the sun and the shade and height measurements taken. Calculate the 

mean, mode and median for each set of data. 

Height in sun (cm) Height in shade (cm) 

244 104 

265 83 

312 131 

199 99 

278 118 

345 150 

236 162 

197 118 

266 146 

237 128 
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 Height in sun (cm) Height in shade 
(cm) 

Mean   

Mode   

Median   

 

Numbers of mucus-secreting goblet cells were counted per colonic intestinal crypt in patients with 

Crohn’s disease and healthy patients. Calculate the mean, mode and median for each set of data. 

Number of goblet cells – 

Crohn’s disease patients 

Number of goblet cells – 

Healthy patients 

9 15 

11 12 

7 14 

15 9 

10 11 

8 13 

7 12 

12 10 

13 16 

7 11 

 

 Crohn’s disease 
patients 

Healthy patients 

Mean   

Mode   

Median   
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M1.7 – Use a scatter diagram to identify a 

correlation between two variables 

Tutorials 

Learners may be tested on their ability to: 

 Interpret a scatter diagram, e.g. the effect of lifestyle factors on health. 

Scatter diagrams 

Correlation is a very useful statistical technique that looks at relationships between two variables. For 

example, taller people tend to have larger shoe sizes than shorter people, therefore we can say that 

height is correlated with shoe size.  

This relationship isn’t perfect, two people of the same height can have different shoe sizes, and a 

shorter person could have a larger shoe size than someone who is taller than them. The correlation 

coefficient tells us how close that relationship is to being perfect (see M1.9 for details on how to 

calculate and interpret this), but we can plot a range of people’s height measurements and shoe sizes 

on graphs called ‘scatter diagrams’ or ‘scatterplots’ to easily visualise this relationship. 

 

UK Shoe 
size 

Height 
(inches) 

1 4 57 

2 4 62 

3 6 60 

4 7 68 

5 8 71 

6 9 73 

7 11 72 

8 11 74 

9 12 70 

10 12 79 

11 5 58 

12 5 54 

13 8 68 

14 8 69 

15 9 71 

16 9 68 

17 7 65 

18 7 64 
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In this example we can see that our graph shows a strong positive linear correlation. A strong 

correlation is one where we can draw a trend line through the data points, and they are all very 

close to the line. Although it is a strong correlation, you can see that few of the data points sit 

perfectly on the trend line, instead there are just as many above and below it. A data point that sits 

below the trendline describes an individual who is shorter than their shoe size would predict, while a 

data point above the line describes someone who is taller than their shoe size predicts. The closer 

the data points cluster to the line, the more accurately the trend line describes individuals in the 

dataset. 

  

Perfect positive correlation         Weak positive correlation                     No correlation 

Our example shows positive correlation because as height increases so does shoe size. 

Negative correlation would imply the opposite: as height increased, shoe size decreased 
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An example of negative correlation 

Our example is linear because the relationship does not change (we do not reach a certain point 

where very tall people start to have smaller feet).  

 

Example of quadratic relationship 

It is important to remember that correlation does NOT imply causation. While it might seem intuitive 

to say that being taller causes feet to generally be bigger, we cannot conclude this simply from the 

evidence of correlation. It would be just as consistent with the observed correlation to suggest that 

the larger feet cause the greater height or that there is a third variable (such as genetics or diet) that 

affects both height and shoe size in the same way.  
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M1.7 – Use a scatter diagram to identify a 

correlation between two variables 

Quiz 

1.   Which of the following is/are appropriate to draw as scatterplots? 

A. The mean horn length of two populations of African rhinos 

B. The frequency of short-haired and long-haired cats from a cross of two long-haired 

parents 

C. The diameter of oak tree trunks and the average number of leaves per branch 

D. The abundance of insects and the fledging weight of lapwing chicks.  

 

 

 

2. Plot the following information from the table into a scatterplot – the length of a male 

peacock’s tail against the number of females he courted in a single breeding season 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Add a trendline to this scatter plot and describe the relationship you observe. 

Peacock Tail length (cm) Number of females courted 

1 140 1 

2 135 1 

3 156 3 

4 147 4 

5 152 5 

6 164 5 

7 154 4 

8 162 6 

9 139 2 

10 149 3 

11 153 4 

12 159 5 

13 154 5 

14 157 4 

15 161 5 
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3. Describe the relationship observed in this scatterplot charting the weight of female house flies 

against the number of eggs laid per day.  
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M1.8 Make order of magnitude calculations 

Tutorials 

Learners may be tested on their ability to: 

 use and manipulate the magnification formula, 

objectrealofsize

imageofsize
ionMagnificat   

Order of magnitude 

Orders of magnitude are used to make approximate comparisons of size or quantity. If two numbers 

have the same order of magnitude, they are about the same size. If two numbers differ by one order of 

magnitude, one is about ten times larger than the other. If they differ by two orders of magnitude, they 

differ by a factor of about 100, and so on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, if you were comparing the surface of an orange with that of the earth, one would say the 
surface of the earth is many orders of magnitude larger than that of the orange. 

The formula used to calculate magnification is: 

objectrealofsize

imageofsize
ionMagnificat   

Powers 

of ten 

Order of 

magnitude 

0.0001 −4 

0.001 −3 

0.01 −2 

0.1 −1 

1 0 

10 1 

100 2 

1,000 3 

10,000 4 

https://simple.wikipedia.org/wiki/Exponent#Powers_of_ten
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You can rearrange the formula to calculate any of the three unknowns, as long as you have the other 

two. However for this to work you must make sure that both quantities/sizes are in the same units. 

For example take the following micrograph showing a section of mouse pancreas at high power, one 

acinus (a cluster of cells) is circled. The magnification of the micrograph is x400 and the length of the 

circled acinus is 32 mm. We want to calculate the actual size of the acinus. 

 

Magnification  x400 

Length of the circled acinus in the image  32 mm 

 

We want to calculate the actual size of the acinus. This means we need to rearrange the 
magnification formula (rearranging formulas is covered in detail in section M2.2) to make the size of 
real object the subject of the equation. This gives us the size of the real object equals the size of the 
image divided by the magnification. 

objectrealofsize

imageofsize
ionMagnificat   

ionmagnificat

imageofsize
objectrealofSize   

In this example this means the actual size of the acinus is equal to 32 mm (the size of the acinus in 
the image) divided by 400 (the magnification). Therefore the actual size of the acinus is 0.080mm, or 
in more appropriate units, 80 µm. 

32 mm / 400 = 0.080 mm = 80 µm 
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M1.8 Make order of magnitude calculations 

Quiz 

1 This is an electron micrograph of a mitochondrion. Its actual length is 5 μm.  Calculate 
the magnification of the image. 

 

B0000119 Credit Prof. R. Bellairs, Wellcome Images  

TEM of a mitochondrion 

A transmission electron micrograph of a mitochondrion in a chick embryo cell. 

 

 

 

 

 

 

 

https://wellcomeimages.org/indexplus/result.html?wi_credit_line%3atext=%22Prof.%20R.%20Bellairs%22&%24%3dsort=sort%20sortexpr%20image_sort&%2asform=wellcome-images&_IXACTION_=query&_IXFIRST_=1&_IXSPFX_=templates%2fb&_IXFPFX_=templates%2ft&%24%20with%20image_sort=.
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2 This botanical illustration from about 250 years ago shows a banana plant. The image has a scale 
line where each division represents 30 cm. What is the magnification? 
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V0043033 Credit: Wellcome Library, London 

Banana plant (Musa species): flowering and fruiting plant with stolons and separate floral segments and sectioned fruit, 

also a description of the plant's growth, anatomical labels and a scale bar.  

 

3 A false-colour transmission EM image of a white blood cell has a magnification of x2000. What is 
the diameter of the white blood cell? 

 

B0004162 Credit University of Edinburgh, Wellcome Images  

Monocyte and two red blood cells 

Colour-enhanced image of a monocyte and two red blood cells. Monocytes are white blood cells that develop  

  

 

 

https://wellcomeimages.org/indexplus/result.html?wi_credit_line%3atext=%22University%20of%20Edinburgh%22&%24%3dsort=sort%20sortexpr%20image_sort&%2asform=wellcome-images&_IXACTION_=query&_IXFIRST_=1&_IXSPFX_=templates%2fb&_IXFPFX_=templates%2ft&%24%20with%20image_sort=.
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M1.9 – Select and use a statistical test 

Tutorials 

Learners may be tested on their ability to select and use: 

 the chi squared test (𝜒2) to test the significance of the difference between observed and 

expected results 

 the Student’s t-test 

 the Paired t-test 

 the Spearman’s rank correlation coefficient. 

Statistical tests 

Choosing and using statistical tests can seem daunting at first, but they are very useful tools for analysing 

data. In simple terms each type of statistical test has one purpose: to determine the probability that your 

results could have occurred by chance as opposed to representing a real biological effect.  

Why do we need statistical tests? As scientists we are interested in finding results that apply as general 

rules. For example, on average are students in Year 10 taller than students in Year 9? The best and most 

complete way to do this would be to find every single student across the whole country that is currently 

in Years 9 or 10 at school and measure every single one. In reality we cannot collect data from every 

school in the country, it would just take too long. Therefore in this example, and with all experiments, we 

collect data from a small subset of the population instead (this is our sample). From the sample data (e.g. 

all of Year 9 and 10 in one school) we infer things about the population as a whole.  

Statistical tests allow us to make quantitative statements about the inferences we have made. We can 

put a number on how confident we are that our conclusion about the whole population is correct based 

on the sample we have taken.  

We will cover four types of statistical test: the chi squared test, the Spearman’s rank correlation, the 

Student’s t-test, the paired t-test.  

The choice of which statistical tests we use on our data depends on the question being asked. So always 

look at your data and ask yourself whether you can say yes to these questions – the one that fits best tells 

you which statistical test to perform. 

1) Am I looking at frequencies, and whether my observations differ from expected values? For example 

– count the number of red, purple and white flowers that come from a genetic cross of two purple 

flowers where I expect a ratio of 1:2:1 

Test – chi squared test  
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2) Am I looking at the relationship between two variables?  

For example – ice-cream consumption and blood sugar levels, to see if people who eat a lot of ice-

cream have higher blood sugar.  

Test – Spearman’s rank correlation  

3) Am I looking at the whether there is a difference in the means between two separate/independent 

groups?  

For example – measuring the heights of men and women to see if there is a difference in the average 

height by gender 

Test – Student’s t-test 

4) Am I looking at whether there is a difference in the mean between the same group before and after 

a change?  

For example – measuring the cholesterol levels in people before and after switching to a vegetarian 

diet to see if there is an effect on cholesterol of this dietary change 

Test – Paired t-test 

Which of the four tests is most appropriate for answering the example question we had earlier: ‘on 

average are students in Year 10 taller than students in Year 9?’? 

Hypotheses 

Statistical tests allow us to test hypotheses about relationships. With every statistical test we generate 

two competing propositions:  

 the null hypothesis (H0) 

 the alternative (H1) 

The alternative hypothesis comes from your idea that a particular effect will be present, while the null is 

simply the opposite, that the effect is absent.  

Taking our previous example of height and year group we can generate the following hypotheses: 

 H1 : Students in Year 10 are taller on average than students in Year 9 

 H0 : On average students in Year 10 do not differ in height from students in Year 9 

The reason we have a null hypothesis is because we cannot prove experimental hypotheses but we can 

reject dis-proven hypotheses.  This can be quite confusing but, simply put, it is easier to dis-prove a 
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theory than prove one. If our data gives us the confidence to reject the null hypothesis then this provides 

support for our alternative hypothesis, but it does not prove it.  

Similarly if our statistical test shows no significant effect, we refer to this as failing to reject the null 

hypothesis. This is the statistics equivalent of using “not guilty” rather than “innocent” in a court verdict; 

we have not provided the evidence to reject the null hypothesis at this time but it doesn’t preclude 

changing our minds if more evidence comes to light at a later date.  

Student’s unpaired t-test 

This is the best test for looking at average differences between independent groups. So this is the test we 

would use to compare, for example, the average height of children in Year 9 and the average height of 

children in Year 10. We would take a sample from each of the year groups (one Year 9 class and one Year 

10 class) and measure the variable we’re investigating (height) for all the individuals in each sample. 

Then, on the basis of these measurements, we use the Student’s t-test to say whether we can be 

reasonably confident that there really is a difference in the mean height of all Year 9 children compared 

to all Year 10 children. 

Year 9 Year 10 

Name Height (cm) Name Height (cm) 

Connor 170 Mick 178 

Tristan 181 Keith 174 

James 178 Charlie 173 

Brad 170 Ronnie 175 

Alana 174 Danielle 178 

Este 180 Taylor 178 

Tegan 157 Jenny 174 

Sara 157 Gemma 163 

Mean 170.9 Mean 174.1 

Standard 
deviation 

9.5 
Standard 
deviation 

4.9 

 
You can see that the means of our two sample groups are different.  

Mean 170.9 Mean 174.1 
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No-one can say there is no difference there.  

But we are not interested in the samples. We are interested in using the data from our samples to say 

things (with confidence) about the whole population (in this case all of year 9 and all of year 10). The 

important thing for us to find out, therefore, is whether the difference we see between the sample 

means is significant – is it big enough (given the size of the sample and how much variation we see in the 

data) for us to be confident that it reflects a real difference between the two year groups rather than just 

chance variations in the samples we happen to have picked? 

Our null hypothesis is that there is no difference between the heights of Year 9 and Year 10 children. If 

this is true the difference between the sample means is not because there is really any difference 

between the means for all Year 9s and all Year 10s. It just arose by chance in the particular samples we 

took. The difference we see in our samples is not big enough to make us confident in saying that the two 

year groups really are different. We would say that there is ‘not a significant difference’. 

The alternative hypothesis is that the there is a difference in height between the two whole year groups. 

In order to reject the null hypothesis we need to identify a ‘significant difference’ between the sample 

means. The difference is big enough that we can be confident it is telling us there is a real difference 

between the year groups. We can make a statement such as “on average the students in Year 10 are 

taller than students in Year 9”.  

The statistical test allows us to find out whether we can confidently reject the null hypothesis. 

The Student’s t-test formula is as follows:  

B

B

A

A

BA

n

s

n

s

xx
t

22






            

The modulus sign (vertical lines) in the numerator tells us to ignore any minus sign once we have 

subtracted one mean from the other 

Subscript A and B refer to the two groups – Year 9 and Year 10. 

�̅�  refers to the mean, so that �̅�A is the group mean of the Year 9 class 

S is the standard deviation 

n is the sample size 

 

So that 
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t =  
(170.9−174.1)

√(9.5)2

8
 + 

(4.9)2

8

 

t = 0.4 

To understand what this means we must look up the value in the Student’s t-test significance tables.  

First calculate the degrees of freedom (df) which is n-1 for each group: 

(8-1)+(8-1) = 14 

At 14 df the value of t = 0.4 is below the threshold of t = 2.15 which is the threshold at which we consider 

the difference to be significant 

There is no significant difference between the height of students in Year 9 and Year 10 in our dataset.  

Therefore we state that we have failed to reject the null hypothesis 

This does not mean that we have proved that the mean height of Year 9 and Year 10 children is the same. 

It means that we have failed to show a significant difference based on the data we have gathered. 

Perhaps there really is no difference, or perhaps there really is a difference but our samples failed to 

show it (which could be for many reasons but most obviously it could simply be that the samples were 

not large enough). 

Assumptions 

When performing a Student’s t-test the following things are assumed about the data in order to trust the 

test result.  

 We have two independent groups 

 For each group we have taken an unbiased sample and measured the same variable 

 The variable is continuous 

 The continuous variable is normally distributed for each group 

 Each group has approximately equal variances (i.e. similar standard deviations) for this 

variable 

 The sample sizes are roughly equal 

Paired t-test 

When looking for differences between means in two groups we use a t-test. If the two groups are 

independent of each other we use the unpaired version of this test. However, if the two groups come as 

related pairs we can use the paired t-test, allowing us to identify quite subtle but significant differences 



 

Version 1 42  
© OCR 2017 

that might be missed with the unpaired test. It is essential to understand that the pairing must be done 

according to some genuine relationship between the members of each pair and must always be done 

based on that relationship not based on the data gathered. 

For example if we measure a variable such as systolic blood pressure in a set of patients on Monday and 

then measure the same variable in the same set of patients on Tuesday we have two groups (patients on 

Monday and patients on Tuesday) and there is a natural pairing across these two groups (data on patient 

A on Monday will obviously be paired with data on the same patient the next day). This is a prime 

example where using the paired t-test is appropriate. 

 

But beware! You might think that the following scenario would also allow analysis by the paired t-test but 

it would not:  

 We measure systolic blood pressure in two groups of ten patients.  

 We then rank the data in each group from highest to lowest.  

Now can we pair up the highest in each group, then pair up second highest and so on? No! This is pairing 

after data gathering and is using the data itself to guide the pairing. Using a paired t-test in this case could 

easily lead us to mistakenly identify a significant difference where none exists. 

As an example we will use the paired t-test to compare the mean difference in shell size of the same 

hermit crabs, before and after they are given the opportunity to swap out their shells for one of a range 

of others. These are measurements on 15 individual crabs measured twice (before and after shell 

swapping) .  

Hermit crab 

Shell size 
before shell 

swapping 
(mm) 

Shell size after 
shell 

swapping 
(mm) 

Difference 
d 

How far is 
difference 
from mean 
difference? 

(d-�̅�) 

(d-�̅�)2 

1 8 8 0 -2.2 4.84 

2 10 12 2 -0.2 0.04 

3 5 7 2 -0.2 0.04 

4 6 8 2 -0.2 0.04 

5 4 5 1 -1.2 1.44 

6 7 11 4 1.8 3.24 
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Hermit crab 

Shell size 
before shell 

swapping 
(mm) 

Shell size after 
shell 

swapping 
(mm) 

Difference 
d 

How far is 
difference 
from mean 
difference? 

(d-�̅�) 

(d-�̅�)2 

7 9 10 1 -1.2 1.44 

8 11 13 2 -0.2 0.04 

9 13 13 0 -2.2 4.84 

10 15 14 -1 -3.2 10.24 

11 8 11 3 0.8 0.64 

12 9 14 5 2.8 7.84 

13 7 15 8 5.8 33.64 

14 9 10 1 -1.2 1.44 

15 11 14 3 0.8 0.64 

  Total 33  70.4 

 

𝒅 ̅= Mean difference = 33/15 = 2.2 

Calculate for each hermit crab how far the difference in shell sizes is from the mean difference. Square 

these numbers and add them up to find the total = 70.4 

From this we can calculate the standard deviation of the difference 1

)( 2






n

dd
sd

 

=  √
70.4

14
 = 2.24 

 

The paired t-test is as follows: 

= 
2.2 √15

2.24
 = 3.8 

79.81
88.1

157.39


ds

nd
t
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Now we need to see whether this value of t is large enough for us to reject our null hypothesis. We can 

refer to a critical values table, picking the entry for our desired confidence level (95% or p=0.05) and the 

correct degrees of freedom. In a paired t-test the number of degrees of freedom is n-1. 

15 individuals were used so n-1 = 14 

The critical value at p = 0.05 for 14 degrees of freedom is 2.15 

3.8 > 2.15 so our t value is greater than the critical value and we can reject the null hypothesis that there 

is no change in average shell size after being given the opportunity to swap shells. Giving hermit crabs the 

option to change their shells does have an effect on average shell size. 

Assumptions 

When performing a paired t-test the following things are assumed about the data in order to trust the 

test result.  

 We have two groups with some dependency or relationship between specific pairs (one 

from one group one from the other) (e.g. same subjects measured before and after) 

 We have taken an unbiased sample of these pairs and measured the same variable 

 The variable is continuous 

 The continuous variable is normally distributed for each group with the same variance 

Spearman’s rank correlation coefficient 

If we have data on two variables for a set of items and we want to see if these variables are related we 

can test them for correlation. Correlation comes in two forms: 

Positive correlation – as one variable increases in value, so does the other 

Negative correlation – as one variable increases in value, the other decreases in value 

As an example we will use the Spearman’s rank correlation coefficient to comment on the relationship 

between the size of a locust and the length of its wings. So in this example the set of items is the locusts 

in our sample and the two variables we are looking at for each locust are body length and wing length. 

When we use the Spearman’s rank coefficient to calculate a correlation, we first have to rank the data for 

each of the variables. 

Locust 
Body length x 

(mm) 
Wing length y 

(mm) 
Rank x Rank y d d2 

1 15 7 9 10 -1 1 
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Locust 
Body length x 

(mm) 
Wing length y 

(mm) 
Rank x Rank y d d2 

2 10 6 10 9 1 1 

3 80 32 1 1 0 0 

4 45 23 6 5 1 1 

5 53 19 5 6.5 -1.5 2.25 

6 62 29 2 2 0 0 

7 35 18 8 8 0 0 

8 41 19 7 6.5 0.5 0.25 

9 58 28 4 3 1 1 

10 61 27 3 4 -1 1 

 
If two equal values appear e.g. for Rank y at rank 6, then both are given the rank 6.5 (halfway between 

rank 6 & 7) and no values are given rank 6 or 7.  

Next we calculate the difference between the ranks = d  and then square this = d2 

Then we find the sum of all the d2 values 

∑d2 = 1+1+0+1+2.25+0+0+0.25+1+1 = 7.5 

Now we can calculate the correlation coefficient using the formula: 

8661.0
336

45
1

)17(7

5.76
1

)1(

6
1

22

2












nn

d
rs

 

An rs value of +1 shows perfect positive correlation 

An rs value of -1 shows perfect negative correlation 

An rs value of 0 shows no correlation 
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To find out whether the rs value we have calculated is sufficient evidence to reject our null hypothesis we 

need to refer to the critical values table. Some versions of this table have entries listed according to n, the 

number of items (locusts in this case, n = 10). Some versions have entries listed by degrees of freedom. 

The number of degrees of freedom is: 

d.f. = n - 2 = 8 

The critical value for the Spearman’s rank correlation coefficient for  n = 10 or df = 8 at p=0.05 is 0.6485 

Our calculated value for rs is therefore greater than the critical value 

0.8661>0.6485 

Therefore we can reject the null hypothesis that there is no correlation between locust body size and 

wing size. We can accept the alternative hypothesis that there is a correlation between locust body size 

and wing size.  

Our rs is positive (+0.8661), therefore we have positive correlation: as the size of a locust increases there 

is a tendency for its wing length to increase.  

Remember - correlation does not equal causation – we have shown that these two variables tend to 

change together, but we have not shown that there is a cause and effect. 
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Assumptions 

When performing a Spearman’s rank correlation the following things are assumed about the data in order 

to trust the test result: 

 We have a set of items and we have data on the same two variables from every one of 

those items 

 Both variables are ordinal (i.e. they can be placed in order (ranked)) or a measurement.  

We also assume that there are few (or no) tied ranks. In cases where there are many ties we can correct 

for this by using a slightly different formula but that is beyond the scope of the A Level Biology maths 

requirements. 

The chi squared test 

When we want to look at distributions of frequencies and whether they differ from expected values we 

can use the chi squared (χ2) test. Our expected frequencies can be based on previous observations from 

experiments, or simply an expectation that there should be equal proportions in each category.  

For example, we cross two flowers with pink petals – we know that both of these plants are 

heterozygotes and they carry two co-dominant alleles, one for red petals and one for white petals. We 

then count the frequency of offspring that develop with either red, white or pink petals.  

Our null hypothesis is that any differences in the observed numbers of offspring with white, red and pink 

petals from the expected numbers are due to chance. The alternative hypothesis would be that the 

differences are being caused by something other than chance – an unknown interaction with another 

gene perhaps.  

We start by working out what our expected frequencies should be. A Punnett square is a good way to do 

this. In the table below the alleles present in the parental gametes are shown and then, within the 

outlined section, the four equally likely outcomes of each fertilisation event, giving the alleles present in 

the offspring and the resulting appearance  

  Parental gamete alleles 

  Red White 

Parental gamete 
alleles 

Red 
Red/Red 

Red 
Red/White 

Pink 

White 
Red/White 

Pink 
White/White 

White 
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From this simple table we can see that we expect to see frequencies in the offspring of White:Red:Pink 

petals at a ratio of 1:1:2.  

Let’s say we count a total of 160 offspring from the cross, we can therefore calculate the expected 

numbers of white, red and pink petals – let’s compare that to the observed numbers in the table below 

 Expected Observed 

White 40 28 

Red 40 46 

Pink 80 86 

Is there a significant difference between the expected and observed frequencies?  

The χ2 value is calculated as follows: e

eo

f

ff 2

2 )( 


 

f0 = observed frequencies 

fe  = expected frequencies 

χ2 = 
(28−40)2

40
+ 

(46−40)2

40
+  

(86−80)2

80
= 4.95 

Once again we must look up this value in the appropriate statistics data table and compare it to the 

critical value at the appropriate degrees of freedom.  

There are 3 offspring types – red, white and pink, so n = 3 

Therefore degrees of freedom = n-1 = 2 

On the χ2 table the critical value where p = 0.05 and df = 2 is 7.81 

4.95 < 7.81 therefore our χ2 value does not reach the critical value for significance at 2 degrees of 

freedom.  

Therefore we cannot reject the null hypothesis:  differences between our observed frequencies of petal 

colour and expected frequencies could be due to chance alone.  

Assumptions 

When performing a Chi-squared test the following things are assumed about the data in order to trust the 

test result.  There is a minimum sample size for performing the chi squared test – this is indicated by each 

expected value in a cell being >5 
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M1.9 – Select and use a statistical test 

Quiz 

1. We measured the mass of nine sample adult males in each of two separate populations 

of elephants (A and B), and want to know if the means of the two populations are 

different.  

Sample 
number 

1 2 3 4 5 6 7 8 9 

Population A 
mass of adult 

male (kg) 
6000 5590 6124 5800 5987 6020 5900 6143 5699 

Population B 
mass of adult 

male (kg) 
4100 5900 4867 5010 5534 5321 5987 5350 5478 

 

a) Calculate the means and standard deviations for the two populations 
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b) Which statistical test is appropriate for testing the hypothesis that there is a difference in 

the mean mass of adult male elephants between these two populations? 

 

 
 

c) Calculate whether there is a significant difference between these means 

 

 
 

2. For which one or more of the following is a Spearman’s rank correlation coefficient the 

appropriate statistical test to use? 

 

A Comparing the relationship between grey seal pup size and fat reserves 

B Comparing the frequency of different species of bluebell in a woodland 

C Describing the relationship between the numbers of ladybirds and the numbers of aphids in 

10 different meadows 

D Comparing the average growth of bacteria on two types of agar plate, where one has been 

treated with penicillin 
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3. Equal amounts of two types of the bacteria E.coli are mixed together in a volumetric flask, one 

of these populations of E.coli is carrying an antibiotic resistance gene. The mixture is then 

poured out onto agar plates that have been inoculated with penicillin and incubated for 24 

hours. Based on previous experiments, when we count the bacteria, we expect there to be 

twice as many colonies on the plate with the resistance gene as without. If we found 846 

colonies on our plates the next day, and 432 of them carried the resistance marker, does this 

differ significantly from our expected frequency?  
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M1.10 – Understanding measures of dispersion 

including standard deviation and range 

Tutorials 

Learners may be tested on their ability to: 

 calculate the standard deviation 

 understand why standard deviation might be a more useful measure of dispersion for 
a given set of data e.g. where there is an outlying result 

Standard Deviation 

You will already be familiar with calculating the “average” or “mean” of a dataset. This is a very 

useful summary value, but it can also be interesting to look at the distribution of scores in the data. 

One way to do this is to calculate the range of scores in the data. Calculating the range of scores is 

easy – simply subtract the smallest score from the largest score.  

Here is an example - There are 11 people on a bus and their ages are as follows: 15,17, 19, 22, 36, 

39, 40, 44, 53, 54 & 90 

The oldest person on the bus is 90, and the youngest person is 15 

The interval within which all the data in the set falls is 15 years to 90 years. This sometimes gets 

confused with the range, as it is natural in everyday speech to say ‘the ages of people on the bus 

ranged from 15 to 90 years’. However, to find the range, by its strict definition, we need to do that 

very simple calculation: 

Subtract smallest score from largest score 

the range is 90 - 15 = 75 years. 

One problem with using the range is that because it only uses the highest score and lowest score it is 

dramatically affected by extreme scores.  

For example, the age range on the bus was 75 years, but if we compute the range while excluding 

the score of 90 and use the next highest age score, which was 54, we see that the range drops 

dramatically from 75 years to 39 years. Almost half the size!  

Another problem with the range is that it is little help in making inferences about a whole population 

when the data we have is just a sample. 

In this case if we were using the people on the bus as a sample of the whole population of a town, 

knowing the range in our sample is 75 only really tells us that the range in the whole population 

must be at least 75. 
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A different, and much more useful, way of measuring dispersion in sample data is to calculate the 

sample standard deviation. This is less influenced by outlying results and it allows us to make 

inferences about the whole population from which our sample is drawn.  

The greater the standard deviation, the greater the spread of the data.  

The standard deviation is calculated in a few steps. 

One simple way to describe what we are aiming to get out of these steps is that we are going to 

work out on average how different from the mean each of our data points is. If the data are widely 

spread we’ll get a big number, whereas if they are generally close to the mean we’ll get a small 

number. But we’re going to do this in two slightly strange ways, which give us a far more useful 

statistic than a ‘straightforward’ mean of the differences: 

 We will square the differences, to deliberately accentuate the effect of the larger ones 

 We will divide by one less than the number of data points (i.e. n-1 instead of n) 

So first we need to know the mean of our data. Let’s use the ages of the people on the bus again.  

�̅� =  
15+17+ 19+ 22+ 36+ 39+ 40+ 44+ 53+ 54+ 90 

11
= 39 

 

Now we subtract the mean value from each of our observed values (the individual ages of people on 

the bus)  

(𝑥𝑖 − �̅�) = (15-39) (17-39) (19-39) (22-39) (36-39) (39-39) (40-39) (44-39) (53-39) (54-39) (90-39) 

(𝑥𝑖 − �̅�) = -24, -22, -20, -17, -3, 0, 1, 5, 14, 15, 51 

Next we square all these values. This increases the effect on the final result of the numbers further 

away from the mean (which we want to do to give us the most useful statistic for drawing inferences 

about the population – it is not done simply to make all the deviations positive!). We sum the values 

next and you can see that the ‘51’ makes a big contribution (2601) to the resulting sum now that it is 

squared. 

∑(𝑥𝑖 − �̅�)2 = (-24)2+(-22)2+(-20)2+(-17)2+(-3)2+(0)2+(1)2+(5)2+(14)2+(15)2+(51)2 = 4806 

This sum of the squares is a good measure of the accuracy of our model, but it needs to reflect how 

much data we collected (i.e. we are getting an average squared difference) and so we divide the sum 

of squares by the number of observations minus 1 (n-1), (More on this in a moment) 

∑(𝑥𝑖−�̅�)2 

𝑛−1
=  

4806

10
 = 480.6 

There is only one problem with this number – it gives us the average difference between the mean 

and the observations made, but it gives us this in units squared.  So if we square root this value it will 

turn back into the original unit of measurement (age in years).  
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√
∑(𝑥𝑖 − �̅�)2 

𝑛 − 1
=  √

4806

10
= √480.6 = 21.9 

The standard deviation (s) is a very useful tool; the smaller this value is, on average the closer our 
individual data points sit towards the mean.  

With a normal distribution of data we would expect the following to hold true: 

 68% of the data lie within one standard deviation either side of the mean 

 95% of the data lie within 2 standard deviations either side of the mean. 
 
n-1 

Why do we divide by n-1 rather than n? 

If we really want to know the ‘root mean square difference from the mean’ (which is a pretty good 

description of what the standard deviation is) why don’t we divide by n just like calculating other 

means? 

In fact if we were calculating the standard deviation of a whole population (e.g. if we were only 

interested in the people on the bus as a (tiny) whole population and did not want to use them as a 

sample to make estimates about a larger population) we would divide by n.  

But in most biological data handling situations we actually have a sample (because we don’t have 

time to measure every single individual in the whole population) and we use our calculation of the 

sample standard deviation to make inferences about the population. Using n-1 in our calculation is 

essentially a correction factor that makes the number we come up with from our sample a better 

estimate of the standard deviation of the population. 

So for AS and A Level Biology we stick to using the n-1 formula. 

If you are using a calculator or a spreadsheet to calculate standard deviation make sure you press 

the right button, or use the right embedded formula. 
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M1.10 – Understanding measures of dispersion 

including standard deviation and range 

Quiz 

1. Below are the ages (in months) of Queen ants of the genus Cardiocondyla from two 

geographically isolated populations. For each population a random sample of 11 queens was 

taken and the ages recorded. Calculate the mean age and standard deviation for queens 

from each population. Which of these two populations has the smallest standard deviation? 

 

 Queen ant 1 2 3 4 5 6 7 8 9 10 11 

Queen 
age in 

months 

Population 
A 

6 8 10 8 9 6 7 12 14 11 9 

Population 
B 

8 8 9 14 16 9 15 13 12 11 8 
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2. The vertical jump height (mm) was measured of two separate populations (A & B) of fleas. 

Below are two histograms of the distributions of jump heights in the two populations. Both 

populations had a normal distribution around a common mean jump height of 100 mm. 

Which population has the greatest standard deviation? 

A) 

 

B)              
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M1.11 Identify uncertainties in measurements 

and use simple techniques to determine 

uncertainty when data are combined  

Tutorials 

Learners may be tested on their ability to: 

 calculate percentage error where there are uncertainties in measurement. 

Uncertainties 

Any measurement we make tells us about a property of something. It might tell us how long 

something is, how heavy it is, how much coverage something has. The measurement gives a number 

to that property.  

To make measurements we almost always need an instrument of some kind: a ruler, a thermometer, 

a quadrat, a top pan balance etc.  

The measurement is recorded as both a number and a unit: 

e.g. how hot is this flask of water?  

37, degrees Celsius 

 

When we make a measurement there is always some level of uncertainty. A well-made instrument 

should be trustworthy and give precise, repeatable measurements. But for every measurement 

there is always a margin of doubt. We might describe this as accurate to within a given value of 

uncertainty. An example might be a measuring cylinder, which accurately measures volumes of 

liquid to within 0.5 cm3. For example we might measure out 300 cm3 of liquid ±0.5 cm3, which means 

the true volume might be anywhere between 299.5 cm3 and 300.5 cm3.  

For this instrument ±0.5 cm3 is the absolute uncertainty. It doesn’t matter how much liquid we 

measure; the measurement could always be out by this amount.  

The relative uncertainty or percentage error is the ratio of absolute uncertainty to the original 

measurement, expressed as a percentage.  

For example, when measuring 300 cm3 the relative uncertainty is 
0.5

300
∗ 100 = 0.17% 
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However, if I measured out only 50 cm3 the relative uncertainty is 
0.5

50
∗ 100 = 1% 

So we can see that the amount of relative uncertainty is not fixed, it is dependent on the amount of 

absolute uncertainty afforded by the instrument, and the size of the measurement we are making.  

When making more than one measurement, we must account for the absolute uncertainty for each 

new measurement.  

If I measure out 65 cm3 of hydrochloric acid then there is an absolute uncertainty of 0.5 cm3, If I 

measure out and add 30 cm3 of sodium hydroxide solution, then there is also an absolute 

uncertainty of 0.5 cm3. Giving a total absolute uncertainty of 1 cm3. Therefore my combined volume 

is 95 cm3 ± 1 cm3.  

My relative uncertainty for this measurement is 
1

95
∗ 100 = 1.05% 

The same idea applies when we are looking at the change in a value, by subtracting the initial value 

from the final value. 

For example we could use a top pan balance for simple potometry (measuring the water loss from a 

plant by change in mass). 

For this example assume we are using a top pan balance with an absolute uncertainty of +/- 0.1 g 

We take our initial mass measurement: 117.3 g 

24 h later we take our final measurement: 110.0 g 

To find the change in mass we subtract the initial value from the final value: 

110.0 g – 117.3 g = - 7.3 g 

The plant has changed mass by – 7.3 g (i.e. its mass has fallen by 7.3 g) 

The absolute uncertainty associated with this figure is the sum of the absolute uncertainties of each 

measurement: 

0.1 g + 0.1 g = 0.2 g 

The percentage error or relative uncertainty is found, as in the previous examples, by dividing the 

absolute uncertainty by the measured value and expressing the result as a percentage: 

0.2

7.3
∗ 100 = 2.7% 
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M1.11 Identify uncertainties in measurements 

and use simple techniques to determine 

uncertainty when data are combined  

Quiz 

1. A microscope graticule allows fine-scale measurements to be made under a microscope. If 

the graticule is accurate to ± 0.5 µm, and a protozoan parasite Trypanosoma is measured as 

50 µm , calculate the percentage error for this measurement. 

 

 

 

2. Cell cultures of the bacteria E. coli can be measured by a spectrophotometer to give an 

accurate (to within 2%) reading of bacteria cm-3 

A sample has been calculated as containing 3 * 109 bacteria cm-3 

Calculate the absolute uncertainty of this measurement. 

 

 

 

3. A plant shoot is measured for growth over a 5-day time period. Every morning it was 

measured with a ruler accurate to ±0.5 mm and the height recorded as show below. 

Calculate the difference in height between days 1 and 5 and state the percentage error in 

this measurement. 

 

Day 1 2 3 4 5 

Height (mm) 8 11 16 21 24 
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