| Key points to learn | | Key points to learn | | Trilogy: B1 Cell structure and | | | |--|--|----------------------------|--|--|-------------------|--------------------------| | Early light microscopes | Use light and lenses. Have magnifications of x100 to x2 000 | 10.
Mitochondria | Perform respiration to release energy | transport Part of: 4.1 Cell Biology Knowledge Organiser | | | | 2. Electron | Modern. Use a beam of electrons. | 11Cell membrane | Controls movement in/out of cell | | | | | microscope | Magnifications of up to x2 000 000 | 12 Ribosomes | Makes proteins by protein synthesis | | picture (Biolo | | | 3. Magnification 4. Resolving power | How much bigger an image appears than the real object eg Magnification of x100, image looks 100 times bigger than object | 13. Nucleus | Controls activities of cell. Contains genes to build new cells | Cel | Disease and | | | | | 14. Cytoplasm | Jelly where most reactions happen | orgai | nisation | bioenergetics | | | $magnification = \frac{size \ of \ image}{size \ of \ object}$ Smallest size microscope can show | 15 Vacuole | Sack filled with sap. Keeps cell rigid | | tructure and | Communicable | | | | 16 Cell wall | Made of cellulose. Supports cell | | ransport | diseases Preventing and | | | | 17 Chloroplasts | Full of green chlorophyll | Organisation and the digestive | | treating disease | | 5. Typical
Animal cell | Mitochondria Cell membrane Ribosomes Nucleus Cytoplasm | 18 Chlorophyll | Absorbs light for photosynthesis | | | Non-communicable | | | | 19 Eukaryotic
cells | Animal cells and plant cells. Have cell membrane, cytoplasm and nucleus | | system | diseases | | | | 20 Prokaryotic | Bacteria. Do not have a nucleus. | Organising Photo | | Photosynthesis | | | Mitochondria | cells | Genetic material is looped | | plants $igsquare$ | Respiration | | 6. Typical
Plant cell | Cell membrane Ribosomes Nucleus Cytoplasm Vacuole Cell wall Chloroplasts | 21 Diffusion | Particles spreading out in gas/liquid
Move from high→low concentration | Big or small, all organisms are made of cells. Normally too small to see without a microscope, they are the building blocks of all life: animals, plants, fungi and microbes. Maths skills | | | | | | | Dissolved substances like O ₂ and CO ₂ move in/out of cells by diffusion | | | | | | | 22 Factors affecting | Difference in concentration
(concentration gradient) Temperature Surface area to diffuse through | | | | | 7. Photo- | Reaction plants use to make | diffusion | | | | | | synthesis 8. Specialised animal cells | glucose from light, H ₂ O and CO ₂ 1. Sperm – tail to swim 2. Nerve – carry electrical impulses 3. Muscle – contract and relax | 23 Osmosis | Diffusion of water through partially permeable membrane (surface that only lets small particles through). Moves from dilute solution → more concentrated solution | Prefix | Meaning | Standard form | | | | | | Mega (M) | x 1000000 | x 10 ⁶ | | | | | | kilo (k) | x 1 000 | x 10 ³ | | 9. Specialised plant cells | Root hair - absorb water and ions Xylem – carry water and minerals Phloem – carry glucose | 24 Active | Moves substances from low→high | milli (m) | ÷ 1 000 | x 10 ⁻³ | | | | transport | concentration. Needs energy | nano (n) | ÷ 1 000 000 000 | x 10 ⁻⁹ |